

BUILD: SANDY SPRINGS

Let's build something great together

- construction within the jurisdiction.

BUILD: SANDY SPRINGS Let's build something great together

• "BUILD: SANDY SPRINGS" is a series of seminars presented by the

Community Development department of the City of Sandy Springs, GA. It is intended to educate the public on the current policies, procedures and expectations of the City of Sandy Springs, GA as it relates to

• The information presented in these seminars is subject to change with new Code adoptions, changes in City ordinances and zoning, and changes in office policy as it relates to current construction trends.

Stormwater Management

GEORGIA

Residentia

August 29, 2023

Jon Amsberry, PE

City Engineer City of Sandy Springs

Land Development Team

Land Development Manager: Building Official: City Engineer: **Civil Plans Reviewer:** Arborist: Arborist: Storm Water Coordinator: Land Development Supervisor: Land Development Inspectors:

Site/Land Development Plan Review: Chief Environmental Compliance Officer:

Jesus Davila, CFM Jonathan Livingston, P.E. Jon Amsberry, P.E. Jinny Chung Wayne Eleton James Sanders Layton Rideout Roger Bledsoe William Lipscomb German Medina Barry Bozeman Lawrence Sullivan

Visit the Sandy Springs Building and **Construction Page at:**

Land Development and Specialty Permits

Certain projects require special permits instead of or in addition to building permits:

- Plat Reviews Required to build on previously undeveloped land or to split a single property into multiple lots.
- Land Disturbance Required for commercial projects that have an impact on surrounding properties.
- Retaining Wall Required for the addition or removal of a wall that prevents the earth behind it from eroding.
- Signs Required for the installation and display of signs.
- Swimming Pool Required to construct a below ground swimming pool. Temporary Structure Permits – Required to build a temporary structure, such as construction offices at a construction site.
- Tree Removal Required to remove a tree.
- Antenna Required to erect a cell-network antenna or similar. For more information, contact the City's permit desk.

http://www.sandyspringsga.gov/business/building-andconstruction/construction-utility-permits

- <u>Demolition</u> Required for the demolition of free-standing buildings. Fence – Required for the installation of new fences

Table of Contents Sandy Springs Site Plan Review Process PURPOSE – Development Code and Georgia Stormwater Management Manual Performance Standards • Hydrology Study Requirements Example Problem • As-built Requirements • Questions?

Purpose City of Sandy Springs Development Code & Georgia Stormwater Management Manual

GEORGIA STORMWATER MANAGEMENT MANUAL 2016 EDITION

VOLUMES 1

DEVELOPMENT CODE

SANDY SPRINGS"

GEORGIA

DEVELOPMENT CODE

CITY COUNCIL ADOPTED August 15, 2017

Published: 2018

info@municode.com | 800.262.2633 | www.municode.com P.O. Box 2235 Tallahassee, FL 32316

ORDINANCE NO. 2017-08-17

City of Sandy Springs Green Infrastructure Manual

Single Unit Residences

SANDY SPRINGS DEVELOPMENT CODE **DIVISION 9.6 – STORMWATER MANAGEMENT**

SECTION 9.6.1 – PURPOSE

The purpose of this Division is to protect, maintain and enhance the public health, safety, environment and general welfare by establishing minimum requirements and procedures to control the adverse effects of increased postdevelopment stormwater runoff and non-point source pollution associated with new development and redevelopment by focusing on the types of frequently occurring storm events that generate the most water quality impacts.

B. Require that new development and redevelopment maintain the pre-development hydrologic response in their postdevelopment state as nearly as practicable in order to reduce flooding, stream bank erosion, non-point source pollution and increases in stream temperature, and maintain the integrity of stream channels and aquatic habitats;

Sec. 9.6.1

C. Establish minimum post-development stormwater management standards and design criteria for the regulation and control of stormwater runoff quantity and quality and to preserve and/or restore natural hydrologic conditions on development sites;

D. Establish design and application criteria for the construction and use of structural stormwater control facilities that meet the minimum post-development stormwater management standards;

E. Encourage the use of nonstructural stormwater management and stormwater better site design practices, peak rate and/or runoff reduction, and the preservation of greenspace and other conservation areas, by establishing minimum postdevelopment stormwater management standards and design criteria for the regulation and control of stormwater runoff quantity and quality. Coordinate site design plans, which include greenspace, with the City's greenspace protection plan;

G. Establish administrative procedures for the submission, review, approval and disapproval of stormwater management plans, and for the inspection of approved active projects, and long-term compliance; and

H. Protect public health and safety by reducing the risk of localized flooding and reducing the amount of runoff entering streets.

It all boils down to the need to balance growth and redevelopment

with protecting our resources....

Photos courtesy of The Patch @ www.patch.com

EXEMPTIONS – NOTE THAT SFR IS NOT ONE OF THEM!!

Sec. 9.6.3. - STANDARDS

- A. 2. The following activities are exempt from this Division: a. Agricultural or silvicultural land management activities within areas zoned for these activities; and
- Repairs to any stormwater management facility or practice deemed necessary by the Director. b.
- Minor improvements to public parks involving less than 5,000 square feet of land disturbance and less than 1,000 square feet of С. impervious surface.
- Utility installations, repairs or modifications outside of stream buffers. d.
- Installations or modifications to existing structures to accommodate Americans with Disability Act (ADA) requirements. e.
- Installation of pervious pavers (City detail) less than 5,000 square feet.
- Maintenance, repair and resurfacing of existing paved surfaces, except within a Declared Sensitive Area. g.
- Addition of sidewalks along streets. h.
- Stream bank stabilization or restoration.
- Land disturbance required for environmental cleanup or remediation.
- Residential driveway replacement, except within a Declared Sensitive Area.

Sec. 9.6.4. - STORMWATER DESIGN MANUAL

The City will utilize the policy, criteria and information including technical specifications and standards in the latest edition of the 2016 Georgia Stormwater Management Manual and any relevant City addenda (or equivalent City stormwater management design manual) for the proper implementation of the requirements of this Division. The manual may be updated and expanded periodically, based on improvements in science, engineering, monitoring and local maintenance experience.

VOLUMES 1 & 2

Sec. 9.6.5 – PERMIT APPLICATION REQUIREMENTS

A. No owner or developer shall perform any land development activities without first meeting the requirements of this Division prior to commencing the proposed activity.

B. Unless specifically exempted by this Division, any owner or developer proposing a land development activity shall submit to the Department a permit application on a form provided by the City for that purpose.

PERMIT TYPES:

POOL – RESIDENTIAL POOL PERMITS

BR – BUILDING PERMITS FOR NEW SINGLE FAMILY OR ADDITIONS LDP – MINOR LDP FOR SINGLE FAMILY RESIDENTIAL

Sec. 9.6.5

C. Unless otherwise exempted by this Division, a permit application is accompanied by the following items in order to be considered:

- 5. Performance bond, if applicable; and WAIVED FOR SFR

D. The approved stormwater management plan shall obligate the responsible party to accomplish all land clearing, construction, development and drainage in accordance with the stormwater management plan. Any and all permits for development activities may be revoked at any time if the construction of stormwater management facilities is not conducted in substantial conformity with approved plans.

F. Upon completion of the project the applicant or responsible party shall submit the engineer-of-record's certification and as-built plan that includes the global positioning system coordinates of the stormwater management facilities. If the asbuilt plan differs substantially from the approved plan but is still acceptable to the City, then the applicant or responsible party shall update the recorded inspection and maintenance agreement upon approval by the City.

1. Stormwater concept plan and consultation meeting certification in accordance with Sec. 9.6.7; WAIVED FOR SFR 2. Stormwater management plan in accordance with Sec. 9.6.8; 3. Green Infrastructure Feasibility Form in accordance with Sec 9.6.7; ONLY REQUIRED IF SITE = or > 1.0 ACRE 4. Inspection and maintenance agreement in accordance with Sec. 9.6.8, if applicable; WAIVED FOR SFR 6. Permit application and plan review fees in accordance with Sec. 9.6.10.

SEC. 9.6.12 – PERFORMANCE CRITERIA

A. For new developments, the following performance criteria shall be applied to the area of the site impacted by the proposed work. For redevelopment, the following performance criteria shall be applied to the area of the site impacted by the proposed work, provided that the impacted area does not exceed 35 percent of the previously developed area. If the impacted area exceeds 35 percent of the previously developed area, the following performance criteria shall be applied to the entire development, including previously developed area:

1. Water Quality/Runoff Reduction: All stormwater runoff generated from a site shall provide runoff reduction of the first 1.2 inches of rainfall or shall be adequately treated for water quality before discharge. With the exception of single lot residential developments that are not part of a common development, this shall be accomplished by the use of Green Infrastructure Best Management Practices unless determined to be infeasible in accordance with Sec. 9.6.7.B.4. of this code.

2. Stream Channel Protection: Protection of stream channels from bank and bed erosion and degradation is provided by using all of the following three approaches:

a. Preservation, restoration and/or reforestation (with native vegetation) of the applicable stream buffer;

d. For redevelopment projects that create, add, or demolish and replace less than 5,000 square feet of impervious surface and meet the performance criteria of this section, stream channel protection is not required.

b. Twenty-four-hour extended detention storage of the one-year, 24-hour return frequency storm event;

c. Erosion prevention measures such as energy dissipation and velocity control.

3. Overbank Flooding Protection

a. Downstream overbank flood and property protection is provided by controlling (attenuating) the postdevelopment peak discharge rate to the pre-development rate for the 25-year, 24-hour return frequency storm event. If control of the one-year, 24-hour storm under subsection (a) of this section is exempted, then peak discharge rate attenuation of the two-year through the 25-year return frequency storm event must be provided. For redevelopment projects overbank flood and property protection shall be provided by reducing the peak discharge rate up to the 25-year, 24-hour storm event in accordance with the following formula:

b. %PIC/2 = %PDRR USE TO DETERMINE ALLOWABLE PEAK DISCHARGE

c. PIC = Predevelopment Impervious Cover

i. PDRR = Peak Discharge Rate Reduction

d. For sites where previous demolition has removed impervious surfaces, pre-development peak discharge rate calculations and percentage of impervious coverage shall be calculated based on pre-demolition conditions. For sites that have been demolished and have remained fallow and stabilized with vegetation for a minimum of five years, they shall be considered as having pre-development conditions of 20 percent impervious cover for purposes of calculating peak discharge rate reduction.

e. For land development permitted after 2005 and served by appropriate stormwater management facilities, subsequent redevelopment of the same area is not required to further reduce the peak discharge rate, provided that the site continues to meet the reduction previously achieved.

f. For redevelopment projects that create, add, or demolish and replace less than 5,000 square feet of impervious surface and meet the performance criteria of this section, overbank flooding protection is not required.

4. Extreme Flooding Protection

a. Extreme flood and public safety protection is provided by controlling and safely conveying the 100-year, 24-hour return frequency storm event such that flooding is not exacerbated.

b. For redevelopment projects that create, add, or demolish and replace less than 5,000 square feet of impervious surface and meet the performance criteria of this section, extreme flooding protection is not required.

Performance Standards

Water Quality / Runoff Reduction:

- Runoff Reduction is required for a 1.2" rainfall event.
- An Infiltration Test is required at the BMP location at the design depth.
- Green Infrastructure BMP's are preferred. See City's GI / LID Manual.
- IF Runoff Reduction is not feasible, water quality treatment will be required for the un-reduced RRv Volume at a factor of 1.2.
 - This equates to a 1.44" rainfall event.
 - Designer must prepare Green Infrastructure Feasibility Form, regardless of site size.

ALLOWABLE GI/LID PRACTICES FROM GI/LID MANUAL

Table of Contents

Chapter 2: Rainwater Harvesting: Cisterns and Rain Barrels

Chapter 2

Rainwater Harvesting: Cisterns and Rain Barrels

Cisterns and rain barrels are green infrastructure practices that store rainwater for later use, such as landscape irrigation. Rain runoff from impervious surfaces, typically a roof, is collected from a downspout system, screened to remove trash and leaves and conveyed to a storage container for subsequent use. Figure 1 and Figure 2. When properly sized, they can provide significant reductions in stormwater runoff rates, volumes and pollutant loads. Rain barrels may be part of an overall stormwater management system; however, due to their relatively small size, they may not be sufficient to meet the requirements of the ordinance.

The cistern must be emptied regularly, in particular before a large storm, to allow space for incoming stormwater. Rainwater harvesting makes sense only if a proportionately dimensioned landscaping area will be irrigated.

For additional information, consult Section 4.19 Rain Water Harvesting of the GSMM Vol. 2.

Location Considerations

The preferred location for a cistern meets the following considerations:

- Gutter downspouts can be easily connected to the cistern
- Overflow can be directed to downslope areas
- The selected area is level
- The area where the stored water will be used is within reach
- There are no conflicts with utilities
- An electrical connection is available, if applicable
- Emergency ingress/egress to and from the house remain clear
- Per Development Code Section 6.1.2.B.2.b, rain barrels and cisterns less than 6 feet in height may encroach into a required setback, if it remains at least 3 feet away from any lot line. They must be screened according to the specifications for Ground Mounted Equipment of Section 8.2.9.B.4.

Figure 1 | 1500 gallon cistern (LID Urban Design Tools via City of Atlanta)

Figure 2 | Rain Barrel (City of Atlanta)

Chapter 5

Rain Gardens

Rain gardens are small, landscaped depressions filled with a mix of native soil and compost and planted with trees, shrubs and other perennials. They are designed to temporarily store stormwater runoff from rooftops, driveways, patios and other impervious areas while reducing runoff rates and pollutant loads into local streams. A rain garden can be a beautiful and functional addition to the landscape. Figure 18

Location

- Rain gardens should be located to receive stormwater runoff from impervious surfaces.
- Swales, berms, or downspout extensions may be helpful to route runoff to the rain garden.
- Locate at least 10 feet from building foundations and retaining walls.
- Rain gardens cannot be located:
 - Within the public right-of-way;
 - Over other utility lines;
 - Above a septic field; or
 - At the edge of a steep slope.
- Rain gardens on steep slopes (>10%) may require an alternative design with terracing.

Contributing	Depth of Amended Soil (in)					
Impervious Drainage	18	24	30	36		
Area (sq ft)	Required Area of Rain Garden (sq ft)					
100	9.1	7.7	6.7	5.9		
250	23	19	17	15		
500	45	38	33	29		
1000	91	77	67	59		
1500 🖕	136	115	100	88		
2000	182	154	133	118		
2500	227	192	167	147		

Figure 18 | Rain garden (City of Atlanta)

	F	Permeable Pave	RS MAINT	ENANC	E		PERM
B	Common Problems Sediment Build-Up and clogging between Pavers Settling Pavers cracking or splitting						& PEF
	Keep Make	during dry weather the pavers free of trash, d sure that there is no stand	ebris, and sedi ing water in th	ment. e pavers	between		
	Remov arb	orms. We weeds and grass growing b d pavers are being used). Grass within the pavers (onl V trim grass or vegetation n	·				
. Here	fro Visua ove	om area. ally inspect the pavers afte orflow drainage system is wo	r large storms rking.				
	Vacuu After	ect the pavers for damage an am sweep the paver surface t cleaning, additional aggre e pavers. Replace aggregate	o keep free of gate may need t	o be adde	d between		CAN
NINI HIGH W	Keep of Ensur	d Typical Routine Maintenan the contributing drainage a depris, trash, and sediment te that areas surrounding th love grass clippings.	rea and surface -				FROM
<u>¥</u> ≏	Semi-anr Remov Repla	ually in Spring and Fall we sediment, dirt, leaves, a ace any joint material that	has eroded or w	ashed awa	у.		
	Areas flo	eve the system during a rain s should be routinely inspec ow through the system. Repai ed in Winter	ted for settlin	g and los	s of water		
	Orgar Snow 1. 2.	The edges of the plow are p The edges of the plow are p The blade of the snow plow The snow plow is equipped w to glide across uneven su	ssary under the eveled. is raised 1–2 i ith snow shoes	followin nches.			
	Inspe	Aoutine Maintenance Activiti act the surface for deterior the underdrain system to c	ation or breaki	ng into f ng (if ap	ragments. plicable).		
	Benov	lure Routine Maintenance Ac e the Permeable Pavers; inc actice. Clean pavers and bas	lude the top an				
	Prope	(eeping of maintenance activities a erties. of maintenance activities a					
		ained by Homeowners or resi			4 00		
	EPLACEMENTE HE CITY (PROVAL FROM FIONAL BMPs.		-CURB/EDGE RES APPROVED EQU (PROVIDE OVER
DETA	ILS	CITY OF SANDY	SPRINGS	6			
E PAV	ERS	1 GALAMBO SANDY SPRINGS, (770) 730	GA 30350	EA			
		www.sandyspri	ngsga.gov				
				P	rinted: 4/24/2016	133	<u>****</u>
						XX	
							PERME
							N.T.S.
			SHEET	OF	DATE: 8-22-202 SCALE: AS NO		NO. DESCRIP
				1	DRAWN: JGA DESIGN: JGA. APPROVED: J0	3A	
			DRAWIN SS DETAILS		CITY: SANDY SE	PRINGS	
					STATE: GEOR	GIA	
			25				

MEABLE PAVERS RMEABLE SYNTHETIC TURF

BE USED TO EXCLUDE AREA M IMPERVIOUS AREAS.

ONS				
PTION	DATE	STANDARD DETAILS	CITY OF SANDY SPRINGS	
		PERMEABLE SYNTHETIC TURF	1 GALAMBOS WAY SANDY SPRINGS, GA 30350 (770) 730-5600	SA
			www.sandyspringsga.gov	

Channel Protection:

Channel Protection will not be required for a developed 1-year design storm of less than 2 cfs in accordance with GSMM Section 2.2.4.2

Zoning	AREA	AREA	Lot Coverage Max	Maximum Impervious	Permeable	Cw	I-1yr	Q = cIA
	SF	AC		C=0.95	C=0.25		in/hr	cfs
RD-15	15,000	0.34	38%	5,700	9,300	0.52	4.87	0.9
RD-18	18,000	0.41	35%	6,300	11,700	0.50	4.87	1.0
RD-27	27,000	0.62	30%	8,100	18,900	0.46	4.87	1.4
RD-27	30,000	0.69	30%	9,000	21,000	0.46	4.87	1.5
RD-27	35,000	0.80	30%	10,500	24,500	0.46	4.87	1.8
RD-27	39,000	0.90	30%	11,700	27,300	0.46	4.87	2.0
RE-1	40,000	0.92	25%	10,000	30,000	0.43	4.87	1.9
RE-1	43,560	1.00	35%	15,246	28,314	0.50	4.87	2.4
RE-1	55,000	1.26	35%	19,250	35,750	0.50	4.87	3.0

Overbank Flood Control

2-yr, 5-yr, 10-yr, and 25-year design storms.

NRCS TR-55 method Modified Rational Method.

Extreme Flood Control

- Any project of 5,000 square feet or more impervious shall provide Overbank Flood Protection. Analysis of pre-development and proposed developed conditions for the
- Utilize NOAA-14 Atlas for current rainfall depths and intensities.
- Existing conditions ALLOWABLE FLOWS may assume "virgin forest" conditions or utilize the Peak Rate Reduction method in Development Code Section 9.6.12
- Design Professional may use the following modeling methodologies:
- Design Professional must perform analysis for the 50-year and 100-year design storm event.
- For Single Family Residential projects less than 1 acre in size, it is assumed that the project will not have adverse downstream impacts if the Allowable flows are met for ALL design storm events.

Hydrology Study Requirements

HYDROLOGY STUDY REQUIREMENTS Required for ANY project creating or replacing 5,000 square feet of Impervious Surface. MUST BE PREPARED BY A REGISTERED DESIGN PROFESSIONAL IN THE STATE OF GEORGIA (i.e. PE, RLS, RLA) May be separate report or included within the Construction Plans for Single Family projects. Existing Conditions Peak Flows / Allowable discharge rate calculations Developed Conditions un-attenuated flow rate calculations Water Quality / Runoff Reduction volume calculations and associated BMP Design Detention practice calculations and design Extreme Flood and Downstream Analysis. **Construction Details** GI/LID Feasibility analysis, if 1 acre in size or more OR if design professional is requesting a determination that Runoff Reduction is infeasible.

Example Problem

Site Area:	20,392 SF		
	0.47 AC		
EXISTING LO	T COVERAGE		
HOUSE	2,553		
DECK	627		
PORCH	30		
SIDEWALK	204		
DRIVEWAY	1,956		
HVAC PAD	13		
SHED	160		
TOTAL	5,543	27.2%	(
\			95/1-
			to.
		$\langle \rangle$	DELL S
		12	
1			
	\sim		1
1 PE	29.8		1
1			- 1
C:			
	and		フト・
	the state of the s		
	Eucline !!!		
	¥	2	$\neg \Lambda C$
, O.54	OAK OAK		れこ
			-
Lu		12	\square
ic it	Y OF	O	
6	0		
0.00°	+28.6		
60		XF	1
/ Z	OAK	Nº T	\mathbf{X}
	18" OAK	T + 7057	`\
1120			
	SHED	-	- \
\	N S		
		Mo Mo	Ct t
			-
	~+		
	GTINI	6	わん
	SIIN	\mathcal{O}	VA
		-	I
	ι		

951 8511-kJ.9/ CREPE 37.0 4.224 4.10, Bà B FRAME -B BRICK SIN B ACRES EXISTING SPLIT AN ð 158 -0 36.97 10, 820 37.7 ____ 27 18" OAK M. 20, St.10 N 212.90, 21 \sim

45INS

Site Area:	20,392	SF		
	0.47			
Zoning	RD-18			
Lot Cov. Max:	35	%		
DEVELOPED LOT	COVERAG	6E		
HOUSE	4,046			
POOL DECK	488	4,5	34	
POOL&SPA	484	5,0	18	
SIDEWALK	174			
DRIVEWAY	1,376			0
HVAC PADS	44			85
SHED	160	=		
	6,772	33.2		11_
			4511	$c \gamma$
		\	122	>
		` <		5 4
	00			4 32
OFF	M29.8			
		Í		-
100			- 5+	ر_
t e	The second se	NKS	N	
U UU	Weight and	MV7.	•	
00°, 38.3			PΔ	5
69.06' +28.3	5		PA	
		4		
		\mathcal{S}	30	
AL-				
+28.6	- t-		!	\
80.00	A A A A A A A A A A A A A A A A A A A	KI 4	-	
	AK		F /	T
	OAK 18" OAK	Triff		C
0717				
	the states of th		- I	\ \
	L_	$\overline{S} \sqrt{+}$	+31.1	
		200		7511
				~
	1	/		
	+			
	/ 		-n	ł
			ーノ	1
	┠──┽┠───			ť
	\			

Area:	7,379	SF
	0.17	AC

							_ /				
	EXISTING CO	NDITIONS				Basin B (To Rea	ar P/L)				
Basin A (To Ro	ad)					Area:	13,003 9	SF			
Area:	7,379 9	SF					0.30	AC			
	0.17	٩C									
							Rational R	unoff C			
	Rational R	unoff C				Description	Area	С	CA	%	PDRR
Description	Area	С	CA	%	PDRR	Impervious	2,724	0.95	2588	20.9%	10.5%
Impervious	2,820	0.95	2679	38.2%	19.1%	Landscaped	10,279	0.30	3084		
Landscaped	4,559	0.30	1368			Natural		0.25	0		
Natural		0.25	0			TOTAL	13,003	0.44	5672		
TOTAL	7,379	0.55	4047	-		CA =	0.13				
CA =	0.09										
						EXIST	TING FLOW SUN	/MARY - BASIN	В		
EXIST	ING FLOW SUN	/MARY - BASIN	A			Storm				0	
Storm						Frequency	CA	l (in/hr)	Q (cfs)	QALLOWABLE	
Frequency	CA	l (in/hr)	Q (cfs)	QALLOWABLE		(yrs)				(cfs)	
(yrs)		. (,,		(cfs)		1	0.13	4.87	0.63	0.57	
1	0.09	4.87	0.45	0.37		2	0.13	5.62	0.73	0.66	
2	0.09	5.62	0.52	0.42		5	0.13	6.85	0.89	0.80	
- 5	0.09	6.85	0.64	0.51		10	0.13	7.91	1.03	0.92	
10	0.09	7.91	0.73	0.59		25	0.13	9.42	1.23	1.10	
25	0.09	9.42	0.88	0.71		50	0.13	10.60	1.38	1.24	
50	0.09	10.60	0.98	0.80		100	0.13	11.90	1.55	1.39	
100	0.09	11.90		0.80							
TOO	0.05	11.30	1.11	0.03							

	EXISTING CO	NDITIONS				Basin B (To Rea	ar P/L)				
Basin A (To Ro	ad)					Area:	13,003 S	SF			
Area:	, 7,379 S	SF					0.30	AC			
	0.17	٩C									
							Rational R	unoff C			
	Rational R	unoff C				Description	Area	С	CA	%	PDRR
Description	Area	С	CA	%	PDRR	Impervious	2,724	0.95	2588	20.9%	10.5%
Impervious	2,820	0.95	2679	38.2%	19.1%	Landscaped	10,279	0.30	3084		
Landscaped	4,559	0.30	1368			Natural		0.25	0	_	
Natural		0.25	0			TOTAL	13,003	0.44	5672		
TOTAL	7,379	0.55	4047	=		CA =	0.13				
CA =	0.09										
						EXIST	FING FLOW SUN	/IMARY - BASIN	В		
EXIST	ING FLOW SUN	/MARY - BASIN	A			Storm					
Storm				0		Frequency	CA	l (in/hr)	Q (cfs)	Q _{ALLOWABLE} (cfs)	
Frequency	CA	l (in/hr)	Q (cfs)	QALLOWABLE		(yrs)				(015)	
(yrs)				(cfs)		1	0.13	4.87	0.63	0.57	
1	0.09	4.87	0.45	0.37		2	0.13	5.62	0.73	0.66	
2	0.09	5.62	0.52	0.42		5	0.13	6.85	0.89	0.80	
5	0.09	6.85	0.64	0.51		10	0.13	7.91	1.03	0.92	
10	0.09	7.91	0.73	0.59		25	0.13	9.42	1.23	1.10	
25	0.09	9.42	0.88	0.71		50	0.13	10.60	1.38	1.24	
50	0.09	10.60	0.98	0.80		100	0.13	11.90	1.55	1.39	
100	0.09	11.90	1.11	0.89							

EXISTING BASINS CALCS

D	DEVELOPED C	ONDITIONS				Basin B (To Rea	ar P/L - Unatt	enuated)			
Basin A (To Ro	ad)					Area:	14,568 \$	SF			
Area:	, 5,824 S	SF					0.334	AC			
	0.13	٩C									
								Rational Runo	ff C		
	Rational R	unoff C				Description	Area	С	CA	%	PDRR
Description	Area	С	CA			Impervious	5,698	0.95	5413	39.1%	19.6%
Impervious	1,074	0.95	1020			Landscaped	8,870	0.30	2661		
Landscaped	4,750	0.30	1425			Natural		0.25	0	_	
Natural		0.25	0			TOTAL	14,568	0.55	8074		
TOTAL	5,824	0.42	2445			CA =	0.19				
CA =	0.06										
							DEVELOPE	D FLOW SUMM	1ARY - BASIN	В	
	DEVELOPE	D FLOW SUMM	ARY - BASIN	A		Storm				0	SWM
Storm				•		Frequency	CA	l (in/hr)	Q (cfs)	Q _{ALLOWABLE}	REQ'D?
Frequency	CA	l (in/hr)	Q (cfs)	Qallowable	SWM	(yrs)				(cfs)	NLQ D:
(yrs)				(cfs)	REQ'D?	1	0.19	4.87	0.90	0.73	YES
1	0.06	4.87	0.27	0.37	NO	2	0.19	5.62	1.04	0.84	YES
2	0.06	5.62	0.32	0.42	NO	5	0.19	6.85	1.27	1.02	YES
5	0.06	6.85	0.38	0.51	NO	10	0.19	7.91	1.47	1.18	YES
10	0.06	7.91	0.44	0.59	NO	25	0.19	9.42	1.75	1.40	YES
25	0.06	9.42	0.53	0.71	NO	50	0.19	10.60	1.96	1.58	YES
50	0.06	10.60	0.60	0.80	NO	100	0.19	11.90	2.21	1.77	YES
50 100	0.06	10.60	0.60	0.80	NO	200	0.10			<u> </u>	

DEVELOPED BASINS CALOS

Runoff Re	duction C	alculations	Critical Storn	n Duratio	n Calculatio	ons									
Runoff Red	duction Requ	lirements	Storm Frequency (yrs)	CA	I (in/hr)	Q (cfs)	Q _{ALLOWABLE} (cfs)	а	b	T _d	V _P (cft)	P ₁₈₀ (in)	P _{Td} (in)	V _{MAX} (cft)	V _{Req'd} (cft)
Site Area		$0.47 \text{ ac} = 20,392 \text{ ft}^2$	1	0.19	4.87	0.90	0.73	97.05	12.88	12.38	150	1.79	0.73	371	1,082
Impervious Ar	rea (I) =	$0.16 \text{ ac} = 6,772 \text{ ft}^2$ 33.29	% 2	0.19	5.62	1.04	0.84	123.19	15.91	13.54	164	2.03	0.83	399	1,110
R _v =	0.35		5	0.19	6.85	1.27	1.02	157.99	18.44	14.08	176	2.44	1.02	421	1,132
P =	1.20 in		10	0.19	7.91	1.47	1.18	184.23	19.96	14.04	172	2.82	1.18	412	1,123
RR _v =	711 ft ³	Alernate RRv Calc for SFR = 6,772 x 0.1	25	0.19	9.42	1.75	1.40	219.21	21.13	13.83	171	3.38	1.40	413	1,124
WQ _V =	854 ft ³	RRv = 677 ft ² would be acceptable!!	50	0.19	10.60	1.96	1.58	249.86	22.28	13.85	171	3.84	1.58	417	1,128
			100	0.19	11.90	2.21	1.77	278.71	23.01	13.59	161	4.34	1.77	396	1,107
Volume Calc												Minim	um Pond V	olume =	1,132
Top of soil Ele Minimum Cov		1131.0 8 inches	T _d = ((2*C*A*a*	*b)/Qa) ^{0.5} -									RRV	/Req'd =	711
Pond Area. = Pond Bottom		635.0 sf 1124.0	$V_{Preliminary} = 60[0]$		0AQ _A) ^{0.5} + (Q	_A /2)(b-T _C)]						Total V	olume R	Req'd =	1,844

Top of soil Elev. =	1131.0
Minimum Cover =	8 inches
Pond Area. =	635.0 sf
Pond Bottom =	1124.0
Depth of Medium =	6.3 feet
Gross Volume =	4,022 ft ³
Medium Void Ratio =	40%
Net Volume =	1,609 ft ³
RR_V Elevation =	1126.8
Volume provided =	1609 cf
RR_V provided =	711 cf
WQ_V provided =	854 cf

POND VOLUME CALCULATIONS Top of apil [low 1121 0

1131.0	
8 inches	Q = CA(2g
630.0 sf	
1123.0	
7.3 feet	
4,620 ft ³	
40%	IE Ele
1,848 ft ³	Top Pon
1125.8	
1848 ft ³ 711 ft ³ 854 ft ³ 1127.7 1184 ft ³	$A = Q/C(2)$ $A =$ $A = \pi(D^{2})$ $D = (4A/T)$ $D =$ $D =$ $NOTE: US$ $ACCESS T$
	8 inches 630.0 sf 1123.0 7.3 feet 4,620 ft ³ 40% 1,848 ft ³ 1125.8 1848 ft ³ 711 ft ³ 854 ft ³ 1127.7

 $V_{MAX} = V_{P} * (P_{180}/P_{Td})$ $VR_{eq'd} = RR_V + V_{MAX}$

OUTLET SIZE CALCULATIONS:

POND DRAW DOWN TIME

= CA(2gH) ^{1.5}	5		T=V/(K*SA)		
0, (-8,)			V =	1184 ft ³	Volume
Q =	1.77 cfs	Use 25-year storm	К =	0.5 in/hr	Measure
C =	0.6	r	K =	1.0 ft/day	Hydrauli
g =	32.2 fps		SA =	630.0 ft ²	Surface A
IE Elev =	1127.7		Τ=	1.88 days	
op Pond =	1129.0		Τ=	45.12 hours	DRAIN T
H =	1.5 ft				
= Q/C(2gH) ¹	5				
=	0.0108 ft ²				
=π(D ² /4)					
$(4A/\pi)^{0.5}$					
=	0.1172702 ft				
=	1.41 inches		S / A	SMW	$^{\prime}$ A I
DTE: USE 4"	MINIMUM DISCHARG	GE PIPE OR PROVIDE			

ESS TO OUTLET

ne to Drain ured Infiltration Rate ulic Condoctivity e Area for Infiltration

I TIME MUST BE < 72 HOURS

Runoff Reduction Calculations

Runoff Reduction Requirements

Site Area	
Impervious Area	a (I) =
R _V =	0.3
P =	1.2
RR _v =	7'
WQ _V =	8

33.2%

Critical Stor	n Duratio	n Calculati	ons									
Storm Frequency (yrs)	CA	l (in/hr)	Q (cfs)	Q _{ALLOWABLE} (cfs)	a	b	T _d	V _P (cft)	P ₁₈₀ (in)	P _{Td} (in)	V _{MAX} (cft)	V _{Req'd} (cft)
1	0.19	4.87	0.90	0.73	97.05	12.88	12.38	150	1.79	0.73	371	1,082
2	0.19	5.62	1.04	0.84	123.19	15.91	13.54	164	2.03	0.83	399	1,110
5	0.19	6.85	1.27	1.02	157.99	18.44	14.08	176	2.44	1.02	421	1,132
10	0.19	7.91	1.47	1.18	184.23	19.96	14.04	172	2.82	1.18	412	1,123
25	0.19	9.42	1.75	1.40	219.21	21.13	13.83	171	3.38	1.40	413	1,124
50	0.19	10.60	1.96	1.58	249.86	22.28	13.85	171	3.84	1.58	417	1,128
100	0.19	11.90	2.21	1.77	278.71	23.01	13.59	161	4.34	1.77	396	1,107
									Minim	um Pond \	/olume =	1,132
T _d = ((2*C*A*a	$T_d = ((2*C*A*a*b)/Qa)^{0.5}$ -									RR\	/ Req'd =	711
$V_{Preliminary} = 60[CAa - (2CabAQ_A)^{0.5} + (Q_A/2)(b-T_C)]$							Total Volume Req'd =			1,844		
V _{MAX} = V _P * (P ₁₈	₃₀ /P _{Td})											
VR _{eq'd} = RR _V +	V _{MAX}											

SEE GSMM SECTION 3.3.6.2

POND VOLUME CALCULATIONS

Top of soil Elev. =	1131.0
Minimum Cover =	8 inches
Pond Area. =	630.0 sf
Pond Bottom =	1123.0
Depth of Medium =	7.3 feet
Gross Volume =	4,620 ft ³
Medium Void Ratio =	40%
Net Volume =	1,848 ft ³
RR_V Elevation =	1125.8
Volume provided =	1848 ft ³
RR _v provided =	711 ft ³
WQ _v provided =	854 ft ³
Outlet IE Elev =	1127.7

Vol at IE =

CALCULATE POND AREA

1184 ft³

GRAVEL VOIDS ARE ASSUMED TO BE 40%

OUTLET SIZ	E CALCU	LATIONS		
$Q = CA(2gH)^{1.5}$				
Q =	1.77	cfs	Use 25-yea	ar storm
C =	0.6			
g =	32.2	fps		
IE Elev =	1127.7			
Top Pond =	1129.0			
H =	1.5	ft		
$A = Q/C(2gH)^{1.}$	5			
A =	0.0108	ft ²		
$A = \pi(D^{2}/4)$				
$A = \pi (D^2/4)$ $D = (4A/\pi)^{0.5}$				
D =	0.11727	ft		
D =	1.41	inches		
NOTE: USE 4"	MINIMUM	I DISCHARG	E PIPE OR P	ROVIDE
ACCESS TO O	JTLET			

DETERMINE ORIFICE SIZE

USE OF 4" MINIMUM OUTLET PIPE MAY BE ALLOWED IF ACCESS TO OCS IS UNABLE TO BE PROVIDED BASED ON DISCHARGE ANALYSIS.

POND DRAV		ГIME					
T = V / (K*SA)							
V =	1184	ft ³	Volume to Drain				
K =	0.5	in/hr	Measured Infiltration Rate				
K =	1.0	ft/day	Hydraulic Condoctivity				
SA =	630.0	ft ²	Surface Area for Infiltration				
T =	1.88	days					
T =	45.12	hours	DRAIN TIME MUST BE < 72 HOURS				

FOR ANY DETENTION VOLUME BELOW OUTLET, CALCULATE DRAWDOWN TIME THROUGH INFILTRAITON

MUST NOT EXCEED 72 HOURS

As-Built Requirements

As-Builts are submitted through the CSS Portal.

- Drawings shall be uploaded into the permit file and assigned for review • Reviews are scheduled for completion within 3 business days of submittal • Comments/deficiencies will be sent via email to all contacts within the permit

- As-built approval is required prior to issuance of Certificate of
- Occupancy/Completion. Hydrology As-built Requirements:
- Design Engineer shall be engaged to inspect and certify the as-built stormwater management system.
- As-built Stormwater Management System shall be shown and detailed on the As-built drawings.

As-Built Review Process

STORM WATER MANAGEMENT FACILITY CERTIFICATION

Professional Land Survey	or or a Registered Landsca
certify with my signature	e and seal, that the STORM
Project known as	
Number	lying in Land
Land Distric	ct, has (have) been construc
and specifications and ir	accordance with the City o
that I or my designated i	ndividual was present durii
	, 20 .

Signature & Seal

_, a (Registered Professional Engineer or a ape Architect) in the State of Georgia, hereby WATER MANAGEMENT facility (facilities) for the Permit

Lot ______ of Fulton County, Georgia's cted in conformance with the approved plans of Sandy Springs' requirements. I further certify ing its installation. This is the _____ day of

Printed Name

AS-BUILT STORMWATER DATA - BASIN X						
Storm Frequency (yrs)	Qallowable (cfs)	Q _{AS-BUILT} (cfs)	Required Storage Volume (cft)	As-built Stora Volume (cft		
2						
5						
10						
25						
50						
100						
		•	•	•		

Ouestions?

Jesus Davila, CFM (Land Development Manager) (770) 206–1569 (Direct) jdavila@sandyspringsga.gov

Jonathan Livingston, P.E., LEED AP (Building Official) (770) 206–1545 (Direct) (770) 687–5037 (Mobile) jlivingston@sandyspringsga.gov

Jon Amsberry. P.E. (City Engineer) (770) 206–1514 (Direct) (470) 626–6949 (Mobile) jamsberry@sandyspringsga.gov

Jinny Chung (Civil Plans Reviewer) (770) 206–1567 (Direct) (404) 851–7867 (Mobile) jchung@sandyspringsga.gov

Thank You!

James Sanders (Chief Environmental Compliance Officer) (770) 687–5153 (Mobile) jsanders@sandyspringsga.gov

German Medina (Land Development Inspector) (770) 715–1896 (Mobile) gmedina@sandyspringsga.gov

William Lipscomb (Land Development Inspector) (770) 689–9240 (Mobile) wlipscomb@sandyspringsga.gov

Wayne Eleton, P.L.S. (Site Development Plan Reviewer) (770) 206–1424 (Direct) (470) 330–6303 (Mobile) weleton@sandyspringsga.gov

End of Presentation

