T-7249 - Intersection Concept Study Johnson Ferry Road at Glenridge Drive & Glenairy Drive

City of Sandy Springs Public Meeting February 6, 2025

GEORGIA

EXISTING CONDITIONS & CONCERNS

- Traffic signal at four-leg intersection
- Intersection has skewed eastbound and westbound approaches
- The traffic signal phasing (split phasing) increases delay for the eastbound and westbound approaches
- Approximately 10 crashes per year; with 75% rear end crashes and 12% angle crashes
- Vehicles turning right from Johnson Ferry Road often yield instead of making a full stop
- Pedestrian crosswalks do not meet current design standards

EXISTING TRAFFIC VOLUMES

AM HOUR

PM HOUR

DRONE VIDEO OF EXISTING CONDITIONS

IMPROVED TRAFFIC SIGNAL LAYOUT

GLENAIRY DR

Alternative - Improved Traffic Signal:

- · Improved alignment of all approaches
- Improves signal operation (removes split phasing)
- Removes the channelized islands and tightens the Johnson Ferry Road right turn radius
- ROW impacts primarily in NE corner

JOHNSON

FERRY

mmm

VIESBREES.

IMPROVED TRAFFIC SIGNAL SIMULATION

IMPROVED TRAFFIC SIGNAL SIMULATION

ROUNDABOUT LAYOUT

GLENAIRY DE

Alternative - Roundabout:

LEGEND PROPOSED PAVEMENT PROPOSED CURB & GUTTER PROPOSED SIDEWALK

- Provides traffic calming/speed reduction benefit
- Improved alignment of all approaches
- ROW impacts in the NE and SW corners and potential impacts tree(s) in private space for the residential community

REPLACE ENTRY GATE

ROUNDABOUT SIMULATION

ROUNDABOUT SIMULATION

Feature	Improved Traffic Signal	Roundabout
Design Year 2045 – AM Peak Hour Average Vehicle Delay (Level of Service)	30 seconds (LOS C)	17 seconds (LOS B)
Design Year 2045 – PM Peak Hour Average Vehicle Delay (Level of Service)	15 seconds (LOS B)	15 seconds (LOS B)
Safety	Reduction in crashes	Reduction in crashes
CST Cost	\$1,960,000	\$2,150,000
ROW Cost	\$990,000	\$1,250,000
Total (CST + ROW) Cost	\$2,950,000	\$3,400,000
Benefit-to-Cost Ratio	0.54	2.23

- For comparison, the Existing Year traffic operations without modifications is LOS D (38 seconds) during the AM and LOS B (20 seconds) during the PM
- For comparison, the Design Year traffic operations without modifications is LOS E (77 seconds) during the AM and LOS C (23 seconds) during the PM
- Both alternatives accommodate MARTA buses and trucks
- The benefit-to-cost ratio compares the combined operations and safety benefit versus the total project cost. The higher value indicates better performance.

Receive Community Input

Finalize Study

